秦岩,教授/博导,太阳成集团弘深优秀学者,国家青年高层次人才(2023)。
个人主页:https://sites.google.com/view/cquqinyan
教育背景
2007.09-2011.07 信息工程大学,工学学士
2011.09-2013.07 东北大学,工学硕士
2013.09-2018.06 浙江大学,工学博士
2016.12-2017.05 University of Alberta,访学
2019.04-2021.05 新加坡科学设计大学,博士后
2021.05-2022.12 新加坡南洋理工大学,博士后
2023.03-2023.10 太阳成集团,副教授/硕导
2023.11- 太阳成集团,教授/博导
专业领域:
工业大数据分析技术,人工智能技术
主要研究方向:
近年来,以“复杂工业过程(连续化工、批次制造、机械加工等)的高效过程监测及质量预测与自愈控制”、“工控系统网络攻击检测与防御机制”及“工业物联网设备异常监测和剩余寿命分析”为主题,针对多时段、非平稳等工业特性,利用机器学习方法致力于基础研究和应用基础研究工作。
学术兼职和荣誉:
现(曾)任多部国际学术期刊Associate Editor,包括:
· SN Computer Science, Associate Editor
· SCI期刊Processes(IF=3.352),客座主编,“Machine learning in model predictive control and optimal control”
· 会议专题主席,49th Annual Conference of the IEEE Industrial Electronics Society,“Industrial Internet of Things (IoT) for Industrial Process Health Prognosis in the era of Artificial Intelligence”, 2023
· 会议专题主席,2022 IEEE Conference on Smart Data Workshop,“Digital twin and edge computing for cyber physical system: modeling, communication, and learning”, 2022
· 会议专题主席,2022 Asia Control Conference,“Security, privacy, and optimization of industrial intelligent systems” , 2022
· 特邀报告,The 11th Asian Conference on Electrochemical Power Sources, “Transfer learning for health prognosis for Lithium-ion batteries” , 2022
科研情况简介:
面向数字化变革在智能制造中的前沿问题展开研究,在国际知名期刊和学术会议发表论文40余篇,其中以一作/唯一通讯作者发表/录用智能制造领域主流SCI期刊论文20余篇,包括中科院一区及Top期刊9篇(IEEE Trans. Industr. Inform.、IEEE Trans. Cybern.、IEEE/ASME Trans. Mechatron.、IEEE Trans. Veh. Technol.)和自动化领域顶级与知名期刊8篇(AIChE J.、J. Process Control、Chem. Eng. Sci.、Ind. Eng. Chem. Res.等)。在上述研究成果中,面向制造过程的多时段划分研究获2015年中国过程控制会议张仲俊院士优秀论文奖(该年度唯一);申请人参与的发明专利“一种强磁选别过程运行控制方法”获第二届辽宁省专利奖一等奖(排名5/6)。此外,申请人受邀在新加坡举办的学术会议11th Asian Conference on Electrochemical Power Sources做Keynote报告“Transfer learning for health prognosis for lithium-ion batteries”。
论文(选录)
[1] Anushiya Arunan, Yan Qin(秦岩)*, Xiaoli Li, and Chau Yuen*. A federated learning-based industrial health prognostics for heterogeneous edge devices using matched feature extraction [J]. IEEE Transactions on Automation Science and Engineering. Accepted, 2023.
[2] K.Q. Zhou, Y. Qin(秦岩)*, and C. Yuen*. Lithium-ion battery online knee onset detection by matrix profile [J]. IEEE Transactions on Transportation Electrification. Early Access, 2023.
[3] Y. Qin(秦岩), Yuen Chau*, Yongliang Guan. Capsule neural network enabled vehicle trajectory prediction in the V2X network [J]. IEEE Transaction on Vehicular Technology. Early Access, 2023.
[4] Y. Qin(秦岩), A. Auran, C. Yuen*. Digital twin for real-time Li-ion battery state of health estimation with partially discharged cycling data [J]. IEEE Transaction on Information Informatics. In press, 2023.
[5] Chintaka, Y. Qin(秦岩)*, C. Yuen, and et al. A hybrid deep learning model based remaining useful life estimation for reed relay with degradation pattern clustering [J]. IEEE Transaction on Information Informatics, Early Access, 2022.
[6] Y. Qin(秦岩), C. Yuen*, X. Yin, H. Biao. A transferable multi-stage model with cycling discrepancy learning for Lithium-ion battery state of health estimation [J]. IEEE Transaction on Information Informatics, In press, 2022, DOI: 10.1109/TII.2022.3205942.
[7] K.Q. Zhou, Y. Qin(秦岩)*, and C. Yuen. Transfer learning-based state of health estimation for Lithium-ion battery with cycle synchronization [J]. IEEE/ASME Transactions on Mechatronics, In press, 2022, DOI: 10.1109/TMECH.2022.3201010.
[8] Y. Qin(秦岩), C. Yuen*, Y.M. Shao, B. Qin, and X. Li. Slow-varying dynamics-assisted temporal capsule network for machinery remaining useful life estimation [J]. IEEE Transaction on Cybernetics, vol. 53, no. 1, pp. 592-606, Jan. 2023.
[9] Y. Qin(秦岩)*, W. Li, C. Yuen, W. Tushar, and T.K. Saha. IIoT-enabled health monitoring for integrated heat pump system using mixture slow feature analysis [J]. IEEE Transaction on Information Informatics, vol. 18, no. 7, pp. 4725-4736, 2022.
[10] Y. Qin(秦岩)*, S. Adams, and C. Yuen. A transfer learning-based state of charge estimation for Lithium-ion battery at varying ambient temperatures [J]. IEEE Transaction on Information Informatics, vol. 17, no. 11, pp. 7304-7315, 2021.
[11] Y. Qin(秦岩), C.H. Zhao. A comprehensive process decomposition based on quality-relevant slow feature regression for soft sensor modelling [J]. Journal of Process Control. 2019. 77: 141-154.
[12] Y. Qin(秦岩), C.H. Zhao, B. Huang. A new soft-sensor algorithm with concurrent consideration of slowness and quality interpretation for dynamic process [J]. Chemical Engineering Science. 2019. 199: 28-39.
[13] Y. Qin(秦岩), C.H. Zhao, F.R. Gao. An intelligent non-optimality self-recovery method based on reinforcement learning with small data in big data era [J]. Chemometrics and Intelligent Laboratory Systems. 2018. 176: 89-100.
[14] Y. Qin(秦岩), C.H. Zhao, F.R. Gao. An iterative two-step sequential phase partition (ITSPP) method for batch process modelling and online monitoring [J]. AIChE Journal. 2016. 62(7): 2358-2373.
[15] 秦岩, 代伟, 杨杰, 周平. 基于软PLC技术的磨矿运行控制仿真系统的设计与实现[J]. 东北大学学报(EI期刊). 2015. 36(3): 309-313.
联系方式:
yan.qin@cqu.edu.cn; zdqinyan@gmail.com
重庆市沙坪坝区大学城中路20号太阳集团电子游戏信息大楼A418